Casio OH-7000G

Datasheet legend
Ab/c: Fractions calculation
AC: Alternating current
BaseN: Number base calculations
Card: Magnetic card storage
Cmem: Continuous memory
Cond: Conditional execution
Const: Scientific constants
Cplx: Complex number arithmetic
DC: Direct current
Eqlib: Equation library
Exp: Exponential/logarithmic functions
Fin: Financial functions
Grph: Graphing capability
Hyp: Hyperbolic functions
Ind: Indirect addressing
Intg: Numerical integration
Jump: Unconditional jump (GOTO)
Lbl: Program labels
LCD: Liquid Crystal Display
LED: Light-Emitting Diode
Li-ion: Lithium-ion rechargeable battery
Lreg: Linear regression (2-variable statistics)
mA: Milliamperes of current
Mtrx: Matrix support
NiCd: Nickel-Cadmium rechargeable battery
NiMH: Nickel-metal-hydrite rechargeable battery
Prnt: Printer
RTC: Real-time clock
Sdev: Standard deviation (1-variable statistics)
Solv: Equation solver
Subr: Subroutine call capability
Symb: Symbolic computing
Tape: Magnetic tape storage
Trig: Trigonometric functions
Units: Unit conversions
VAC: Volts AC
VDC: Volts DC
Years of production: 1990  Display type: Graphical display  
New price:   Display color: Black  
    Display technology: Liquid crystal display 
Size: 7½"×3½"×1" Display size:  pixels
Weight: 7 oz    
    Entry method: Formula entry 
Batteries: 4×"N" alkaline Advanced functions: Trig Exp Hyp Lreg Grph Cmem 
External power:   Memory functions:  
    Programming model: Formula programming 
Precision: 13 digits Program functions: Jump Cond Subr Lbl Ind  
Memories: 78(26) numbers Program display: Formula display  
Program memory: 422 bytes Program editing: Formula entry  
Chipset:   Forensic result:  

*Overhead display

oh7000g.jpg (33751 bytes)The Casio OH-7000G is an overhead projector version of Casio's classic graphing calculator, the fx-7000G. Apart from a difference in house styling and, of course, the see-through, temperature resistant LCD display, the OH-7000G is identical to the fx-7000G.

Demonstrating this calculator's programming model is the example below that computes the logarithm of the Gamma function to a high degree of accuracy using the Lanczos-approximation.

ln (2.506628283501+92.20704845211÷X-
    .2208497079533÷(X+3))+(X-.5)ln (X+3.85)-X-3.85->G
S<0=>ln (-π÷X÷sin πX)-G->G